Hydrocephalus: Teens and Families with Teens

June 29, 2012

Jay Riva-Cambrin MD MSc FRCS(C)
Topics

- Hydrocephalus in teens overview
 - Etiologies (underlying causes)
- Endoscopic third ventriculostomy
 - Overview
 - Candidates
 - Relationship with teens
- Slit ventricle syndrome
- Headaches in the shunted teen population
- Precocious puberty in hydrocephalus
- Sports
- Driving
- Transition to adult care
Hydrocephalus in Adolescents

- Hydrocephalus Clinical Research Network (HCRN)
 - Registry – 2006 to present
 - 7 sites
 - Representative of the North American hydrocephalus population
Hydrocephalus in Adolescents

- Only 10% of newly diagnosed pediatric hydrocephalus in children 11-18 years
 - Aqueductal stenosis
 - Intracranial hemorrhage
 - Brain tumors
 - Traumatic brain injury (TBI)

- However, most the 90% diagnosed in infancy or at a young age become teens
2 Populations, 1 Age

- Infants → Teens
 - Chronic stage of disease
 - Maintenance treatment mostly
 - Occasional malfunctions/infections
2 Populations, One age

• Hydrocephalus diagnosed and treated as teen
 – In general, associated diagnosis
 • Ex. Brain tumor

• However, in general, much more amenable for an:
 – Endoscopic Third Ventriculostomy (ETV)
What is an ETV?

- Used instead of a shunt
- Slightly higher upfront risks
- Avoids shunt malfunction and infection
Who are the Best Candidates for an ETV?

- **ETVSS → ETV Success Score**
 - Dr. Kulkarni (Sickkids, Toronto)

<table>
<thead>
<tr>
<th>Score</th>
<th>Age</th>
<th>Etiology</th>
<th>Prior Shunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< 1 month</td>
<td>Postinfectious</td>
<td>Previous shunt</td>
</tr>
<tr>
<td>10</td>
<td>1 month to < 6 month</td>
<td>Myelomeningocele, IVH, non-tectal brain tumor</td>
<td>No previous shunt</td>
</tr>
<tr>
<td>20</td>
<td>6 month to < 1 year</td>
<td>Aqueductal stenosis, tectal tumor, others</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1 year to < 10 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>≥ 10 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What About Those with Shunts Placed in Childhood and are now in their Teen Years?

- ETV? - technically more difficult

<table>
<thead>
<tr>
<th>Score</th>
<th>Age</th>
<th>Etiology</th>
<th>Prior Shunt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>< 1 month</td>
<td>Postinfectious</td>
<td>Previous shunt</td>
</tr>
<tr>
<td>10</td>
<td>1 month to < 6 month</td>
<td>Myelomeningocele, IVH, nontectal brain tumor</td>
<td>No previous shunt</td>
</tr>
<tr>
<td>20</td>
<td>6 month to < 1 year</td>
<td>Aqueductal stenosis, tectal tumor, others</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1 year to < 10 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>≥ 10 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Slit Ventricle Syndrome

- Shunted ventricles – Much smaller than normal
- Ventricular lining (ependyma) fibrosis – Stiffens
- Brain stiffens – Decrease compliance
- +/- skull arrests growth prematurely
- Shunt blocks → volume quickly changes to pressure
 - Severe pressure symptoms before CT changes (ventricular enlargement)
Slit Ventricle Syndrome

- **RARE**
- More commonly discussed than actually occurs
- Most shunted children have slit-like ventricles
 - But remain compliant
 - Ventricles enlarge
 - obstructed
Thought to Have Had Slit Ventricle Syndrome

• 5 revisions
 – Headaches
 – No CT changes

• Has a true obstruction
 – Headaches
 – Vomiting
 – Drowsy
So Why do Shunted Teens have Headaches if it's Not the SHUNT?

- They just have more headaches than children without shunts
 - Migraines
 - Tension
 - Cluster
 - Unknown
Table 3

Prevalence and Frequency of Headaches for all Study Participants (N=247)

<table>
<thead>
<tr>
<th>Headache within past month:</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Yes: n (%)</td>
<td>163 (66.0)</td>
</tr>
<tr>
<td>- No: n (%)</td>
<td>84 (34.0)</td>
</tr>
<tr>
<td>Number of days of headaches in past month:</td>
<td>6.17 (8.0)</td>
</tr>
<tr>
<td>mean (Standard Deviation)</td>
<td></td>
</tr>
<tr>
<td>Number of days of headaches in past month:</td>
<td>3.0 (1.0, 31.0)</td>
</tr>
<tr>
<td>median (minimum, maximum)</td>
<td></td>
</tr>
<tr>
<td>Frequency of days of headaches in past month: n (%)</td>
<td></td>
</tr>
<tr>
<td>- 1 day</td>
<td>48 (29.5)</td>
</tr>
<tr>
<td>- 2 to 15 days</td>
<td>100 (61.4)</td>
</tr>
<tr>
<td>- 16 to 31 days</td>
<td>15 (9.2)</td>
</tr>
</tbody>
</table>
Figure 2. Number of Headache Days Reported by 66% of Children and Adolescents who had Headache over the Last Month (N=163).
• Beginning to recognize that all head problems are not the shunt.

• Headache specialists – After ruled out the shunt.
Puberty

• Puberty starts in:
 – Boys \rightarrow ~11 years old
 – Girls \rightarrow ~ 9-10 years old

• Precocious Puberty (too early)
 – Female under the age of 8 years (7 years)
 – Male under the age of 9 years
Precocious Puberty More Common in Children with Hydrocephalus
Treatment for Central Precocious Puberty

• Treat for:
 – Social issues
 – Short-stature

• Treat if:
 – Girls → puberty < 9y
 – Boys → puberty < 11y

• Treat with:
 – Supprelin (implanted in biceps 1X/year)
 – Lupron Depot-Ped (monthly IM shot)
Sports?

- No restrictions specific to hydrocephalus
 - Discourage but do not prohibit high-impact
 - Football
 - Lacrosse
 - Hockey
 - Wrestling
 - Gymnastics
Driving?

- No restrictions specific to hydrocephalus
- Epilepsy or seizures
 - Common co-morbidity
 - Would be the driving limiting diagnosis
 - Rules/law varies by state
Transition to Adult Care

- Huge and very hot topic in medicine
 - All pediatric chronic disease
 - Session later dedicated to just this topic
Transition to Adult Care

• GENERAL PRINCIPLES:
 – Shunts less problematic in adulthood
 • Unknown?- no longer a moving target?
 – Still need follow-up
 • But less frequent
 • Adult neurosurgeons
 – “call me if you have a problem or a concern”

• Some specialty clinics are emerging